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Over the past decade, research in machine learning has made remark-
able progress in the processing of text and image data. Computational 
models are now able to outperform human experts in certain classes of 
well- defined tasks. These improvements have come in part through ad-
vances in computer hardware, as well as access to larger public datasets 
for training models. Perhaps the largest contributing factor, however, has 
been the refinement and application of so- called deep learning models. 
The incredible accuracy achieved through these models has led directly 
to real- world applications, including automated medical imaging diag-
noses and machine translation software. Deep learning models have also 
been employed in troubling ways as tools for the security state, as justi-
fication for heavily policing minorities, and in the resurgence of a compu-
tational study of eugenics.1 The prevalence of deep learning demands that 
we take seriously the study of their structure and impact in society. The 
unmatched predictive power of these models in certain critical domains 
guarantees that deep learning will continue to inject algorithmic logic into 
critical decisions affecting everyday lives.

Deep learning models are a class of algorithms that find latent 
hierarchical structures within large datasets. They are constructed by 
chaining together layers of smaller transformations. Taken together, these 
layers transform input data— raw text, images, sound files, and other un-
structured formats— into predictive outputs that capture semantic fea-
tures detected in the original data. While the internal structures of deep 
learning models make them ideal for certain tasks, these benefits come 
at a significant cost. State- of- the- art models contain dozens of layered 
models and billions of numerical parameters. This complexity makes their 
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inner workings impossible to fully understand, even for experts in the 
field.

In order to understand what exactly is meant by “deep learning,” we 
argue that the “depth” explicit in the term has a triple meaning: knowl-
edgeable, the accuracy displayed in the model’s ability to excel in certain 
image process tasks; layered, a visualization of the learned hierarchical 
structures; and impenetrable, the inherent lack of interpretability and un-
derstanding (such as in the “deep sea” or “deep space”) of their algorith-
mic operations. In this chapter, we interrogate these three meanings and 
then argue that all three are intricately linked to each other. There is no 
way to achieve the observed levels of accuracy without constructing 
layered models and introducing black- box methods. Further, there is an 
intrinsic depth to the tasks in domains where deep learning models are 
applied. That is, depth is not just an instrumental feature of working with 
text and image data. The deepness is inherent in the tasks themselves. 
Meaningful computational results in these domains require a deep learning 
approach. Finally, we relate the essential deep nature of certain computa-
tional tasks to implications for future study in the humanities and social 
sciences and to the proliferation of deep learning models throughout so-
ciety. We will limit our analysis to the task of processing image and text 
data, as they are particularly well suited for deep learning and also are a 
primary object of study for humanists and social scientists.

Knowledgeable

Deep learning techniques are now used in nearly all subfields of machine 
learning but are most well known for their application within predictive 
modeling. Predictive models make use of tagged datasets to algorithmi-
cally discover patterns that can be used to predict tags for new objects 
outside of the original collection. A classic example consists of starting 
with a collection of e- mails tagged as being “spam” or “not spam” and 
finding patterns that can be used for automatic spam detection on new 
messages. Several classes of powerful, general- purpose predictive models 
that are frequently used in machine learning have been shown to produce 
reliable predictions within a wide range of applications.2 The majority of 
models struggle, however, on some important classes of problems, most 
notably when applied to tasks involving the processing of text and image 
data. Processing unstructured inputs such as raw text and images is pre-
cisely the type of problem where deep learning models excel.
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The inherent difficulty of building predictive models with text and 
image data can be understood from two related perspectives. First, the 
way that text and image data are stored digitally does not directly capture 
semantic meaning. Consider, as a point of contrast, the task of predicting 
the sale price of a work of art. Features that may be available to deter-
mine the price include who created the work of art, the medium of the 
object, the original date of creation, and its overall size. Each of these 
values measures real- world quantities that directly impact the value of the 
work. Compare this with the task of building a model that detects sar-
casm in a corpus of text or determines the identities of people depicted in 
a collection of photographs. What features will be available for these 
tasks? Machine- readable text is stored as a stream of characters. Digital 
images are represented as three rectangular grids of pixel intensities (red, 
green, and blue). Unlike the semantic variables describing the sale price of 
works of art, individual characters and pixels are essentially meaningless 
in isolation. It is only in context that we comprehend the significance of 
the textual or visual message. Further, there is no obvious alternative rep-
resentation that would map directly onto a semantic meaning.3

A second, closely related, challenge of working with text and image 
data concerns the machine learning concept known as “dimensionality.” 
Textual data are represented as a stream of characters; however, the con-
verse does not hold: many streams of characters are not (understandable) 
textual documents. In fact, only a very small proportion of randomly 
constructed streams of characters will result in readable text. Similarly, 
almost no random constructed rectangular grids of pixels will resemble a 
recognizable image. Most will look like static noise. This creates a chal-
lenge for predictive models because the majority of possible inputs, ran-
dom streams of characters or grids of pixels, fail to be sensible objects for 
consideration in the first place. Therefore, a predictive model must simul-
taneously detect the hidden structures within text and image data while 
also predicting the specific tag of interest. This task turns out to be very 
difficult but well- suited to deep learning approaches, the specifics of 
which we discuss in the next section.

Text and image processing, in addition to being difficult objects of 
study in machine learning, share another common feature: the human 
brain seems particularly well- designed for both tasks.4 The power of 
billions of interconnected neurons firing signals to one another inspired 
the neurophysiologist Warren McCulloch and logician Walter Pitts to 
design a computational model in which signals are passed between 



312 TAY LO R  A R N O L D  A N D  L AU R E N  T I LTO N

independent nodes using a threshold potential similar to the biochemical 
functioning of neurons.5 The approach of McCulloch and Pitts, applied 
to predictive modeling tasks, is considered the genesis of the class of mod-
els known as “neural networks,” the earliest example of a deep learning 
algorithm.6 Early work on neural networks was heavily integrated with 
neurophysiology. Modern developments have diverged sharply from bio-
logical motivations to the point where “state- of- the- art deep learning 
algorithms rely on mechanisms that seem biologically implausible.”7 De-
spite this disconnect, the language of neurology— neurons, neural net-
works, potential, long- term memory, activation functions, developmental 
networks— remains dominant within the machine learning community. 
Partially this is a result of momentum from the earliest research, but today 
it also serves as a strong cultural signal that deep learning represents, 
more than alternatives, “real” humanlike intelligence.8

Interest in neural networks has varied over time. Early excitement was 
dampened by the negative results of Marvin Minsky and Seymour Papert, 
and the inability to train large networks with the computational resources 
available at the time.9 Advances in the 1980s and 1990s addressed some 
of these concerns and led to several well- known examples, including Yann 
LeCun’s classification of handwritten digits.10 However, continued com-
putational challenges and lack of strong empirical motivations for neu-
ral network models held off general interest until very recently.

The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) is 
an image classification contest held annually since 2010 in which teams 
compete to build algorithms that classify images into one of one thousand 
categories.11 In 2012, building off of nearly a decade of work refining 
neural network architectures, Alex Krizhevsky, Ilya Sutskever, and Geoffry 
Hinton produced a winning neural network model— commonly known as 
AlexNet— that had a top- 5 error rate of only 16 percent, compared with 
the 25 percent top- 5 error rate achieved by the second- place team’s 
model.12 In 2017, for example, a neural network model achieved an error 
rate of only 2 percent on the ILSVRC dataset.13 Early and continued suc-
cess on ILSVRC is largely seen to have launched the deep learning “revo-
lution in computer vision,” which continues with no sign of slowing down 
anytime soon.14 Today, the vast majority of research in predictive models 
for computer vision is built on neural networks. Text analysis had at first 
been slower to adopt deep learning, but neural networks have recently 
become popular in the processing of text too. Neural networks have pro-
duced state- of- the- art results in machine translation, sentiment analysis, 
and topic classification.15
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The popularity of deep learning models is a direct result of their un-
matched power to produce predictive models for difficult tasks such as 
text and image processing. In other words, they stand out for their abil-
ity to build off of existing knowledge to predict new knowledge. For this 
same reason, deep learning is an important object for humanistic study. 
Neural network applications are not confined to relatively obscure aca-
demic competitions; rather, they are already being employed today behind 
the scenes in a wide variety of applications. Some of these applications 
directly serve the public good, such as advances in the automated detec-
tion and classification of brain tumors from MRI scans.16 Others play 
directly into the needs of mass surveillance.17 The power of deep learn-
ing allows for the automation of wide- scale privacy invasions for na-
tional and capitalistic motivations, without the limiting cost of having 
humans manually analyze each element of data. It is likely that many of 
the technological advances of the near future, such as self- driving cars, 
will be built on top of deep learning models.18 In order to understand how 
these extant and future applications affect society, it is necessary to also 
understand the deep learning models themselves. The next section pro-
ceeds to explain the internal architecture of deep learning models and the 
relationship of this structure to their observed predictive strengths.

Layered

The focus of the discussion so far has been on the impressive predictive 
power of deep learning models in the difficult domains of text and image 
processing. Other than the original connection of neural networks to 
neurophysiology, which has largely been lost in modern developments, we 
have not explained why deep learning is particularly well adapted to 
these applications. It is this task that we now address. As a starting point, 
a suitable definition of deep learning is required.

Deep learning models apply a sequence of successive transformations to 
an input object of study and ultimately produce a modified output value. 
In the predictive modeling context, the final outputs are the predicted tags, 
and the transformations are adaptively learned by a training algorithm 
applied to a large collection of pretagged objects. Each transformation 
should, at least in theory, assist in moving from “raw” input formats, such 
as pixel intensities or character streams, toward meaningful features that 
capture semantic meaning within an image or textual document. Typi-
cally, the first few transformations consider interactions only between 
small groups of nearby pixels or characters. Successive transformations 
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are applied to larger “windows” of the object, with the final layers applied 
to the entire image.19 An example of a particular, highly idealized deep 
learning model is useful to further explain the concept.

Consider the example image in Figure 15.1 and the selected boxes of 
interest. The first few layers of a neural network may look only at nearby 
swatches of the image and convert the raw pixels into numbers that at 
first describe their overall color and shading. A slightly larger view pro-
vides information about the texture of the grass and edges that make up 
the nose of the man. Subsequent layers reveal small objects (noses), larger 
objects (faces), and finally objects within their context. A final layer, not 
shown within the boxes, could be applied to the entire image to aggregate 
information about the individual objects. This layer would capture fea-
tures about the scene as a whole. Figure 15.2 shows a similar linguistic 
example. Subsequent layers of the neural network look at larger windows 
of the text by grouping characters into words, words into phrases, phrases 
into sentences, and sentences into entire documents.20 The layered nature 
of deep learning models, likely the original motivation behind the term 

Figure 15.1. Conceptual depiction of features detected by subsequent layers 
in a neural network when applied to a photograph image. Photo by Greg 
Parish, “NYC Central Park,” 2015. Licensed under CC- BY 4.0.
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“deep,” is the fundamental feature differentiating them from other ap-
proaches and directly addresses the representational issues presented as 
the primary challenges to working with text and image data.

It is not an easy task to build deep learning models from scratch. 
Dozens of complex transformations operating seamlessly together must 
be created and iteratively modified in an attempt to address the most 
challenging problems in predictive modeling. Very large datasets are 
required in order to estimate the hundreds of millions of parameters that 
describe state- of- the- art neural networks. Public datasets for training 
image models, such as the ILSVRC and VGGFace2 dataset, typically pro-
vide millions of tagged images to produce accurate face- detection mod-
els.21 These datasets are typically constructed by making use of digitized 
corpora such as MediaWiki and Google Image Search. Once a large data-
set is assembled, special hardware in the form of expensive and powerful 
graphics processing units (GPUs) is required to process such large datasets 
through the complex architectures of modern neural networks.22 Even 
with good training data and the required hardware, the actual construc-
tion of neural networks is still a significant challenge. Adjusting the mil-
lions of training parameters is known to be an incredibly fraught task; 
subtle changes to the structure of the network can drastically alter the 
output of the model.23 It would appear that the power of neural networks 
may be restricted to well- funded companies or research groups and avail-
able only for a small set of high- impact tasks for which the payoff in time 
and money is worthwhile. In practice, this is far from the case due to the 
special layered structure of deep learning models.

When trained on sufficiently large image datasets, the initial transfor-
mations described by large neural networks tend to be generalizable to 
new problems unrelated to the original prediction task. Recall that the 
first layers in a neural network only work locally over small regions of 
an image. These initial layers detect general features such as shading, 

compound

dependent clauseindependent clause

noun phrasenoun/subject

She ate the chocolate chip cookie before I  d id.

Figure 15.2. Depiction of hierarchical features detected applying a neural 
network algorithm to a sentence of textual data.
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color, and texture. Even layers in the middle of the network correspond 
to rough shapes and the formation of larger objects. It is only the last few 
layers that are directly related to the specific predictive modeling tasks of 
interest. As a result, predictive neural networks can be adapted through 
the process of transfer learning to predict new outputs by reusing the 
trained values in the interior layers and only learning the form of the final 
one to three transformations. This drastically reduces the amount of data, 
hardware, and expertise required to construct a new model. For example, 
recently a research group built a highly predictive image- processing neu-
ral network using a set of only 443 frontal chest X- ray images through 
transfer learning applied to the AlexNet model.24 The researchers copied 
all but the final layer of the network and trained the relatively small set of 
final weights with their own data. The ability to perform transfer learning, 
which drastically increases the number of feasible applications of deep 
learning, is another direct feature of the layered nature of the models.

The underlying idea of transfer learning— that interior layers in neural 
networks code generic features that can be adapted to new problems— can 
also be used to motivate the related concept of “embeddings.” An embed-
ding applies a selection of lower- level transformations from a neural 
network to an object of interest, the output of which can be viewed as a 
sequence of numeric values. In transfer learning a predictive model is built 
on top of these embedded values, but there is also intrinsic value in the 
embedding itself. Embeddings have, for example, recently received atten-
tion in applications as diverse as cognitive psychology and the digital hu-
manities.25 The numbers described by the embedding capture, according to 
our description of how neural networks function, important semantic fea-
tures present within the input image or textual document. Each number 
in the embedding does not directly correspond to a meaningful quantity. 
Rather, the spatial relationships of the objects within the embedding 
capture various semantic meanings. Inputs with similar features, in particu-
lar, will have similar sequences of numbers. Connecting objects that have 
similar embeddings to one another has been shown to provide accurate 
image and document similarity metrics that require no manual tagging or 
retraining.26 As an example, Figure 15.3 illustrates a two- dimensional 
word embedding for a small collection of words. The full embedding these 
are taken from was trained on the English- language text from Wikipedia 
containing three hundred thousand words arranged in 300- dimensional 
space.27 Food items and verbs/professions are visibly separated in the em-
bedding space. Pairs of closely related terms, such as “journalist- writer,” 
“believe- understand,” and “read- write,” are embedding next to one 
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another. Also, the profession “chef” is situated closer to the food items than 
any other profession. As with transfer learning, the feasibility of embed-
dings is directly tied to the layered nature of deep learning models.

The layered structure of deep learning models is a direct consequence of 
the challenges posed by the processing of image and textual data. Without 
the sequential application of transformations, deep learning would offer 
no immediate benefit to predictive modeling for these difficult classes of 
important machine learning problems. The layers also immediately make 
way for the significant application of transfer learning and embeddings, 
without which deep learning models would be inaccessible to all but a 
small number of applications. Unfortunately, the layered nature also comes 
at the cost of interpretability. It is notoriously difficult, if not outright im-
possible, to comprehend how neural networks achieve their amazing 
predictive results. As we witness a proliferation of neural network appli-
cations in society, our inability to understand exactly what they are doing 
poses a number of concerns.

Impenetrable

Modern neural networks for text and image processing typically consist 
of dozens of layered transformations and hundreds of millions of learned 
parameters. Our description here of how neural networks transform 
images, by successively detecting larger and larger regions of interest 

Figure 15.3. Two- dimensional word embedding of various fruits, 
vegetables, occupations, and verbs.
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and stitching them together, is a highly idealized version of how net-
works actually function. The general concepts have been validated 
through the efficacy of transfer learning and visualizations of embedding 
spaces, but the specific meaning of any given internal representation is 
generally impossible to discern. Because of the complex dependencies 
present within the layers of a neural network, classic approaches to inter-
rogating a particular model, such as applying small perturbations to a 
single parameter and watching the result, are rarely very enlightening. The 
general lack of interpretability in deep learning is a well- known problem; 
several recent workshops were specifically dedicated to papers on the in-
terpretability of neural network models.28 A collection of approaches 
have been proposed in an attempt to build an understanding of how neu-
ral networks function.

One approach for understanding the inner workings of neural networks 
is to focus on the objects in a predictive modeling task that are incorrectly 
tagged. One simple approach is to investigate those categories that have 
particularly high error rates. Does the model have trouble with a specific 
category, or does it struggle to differentiate between a certain set of objects? 
Analysis of the results can be insightful in understanding the internal mech-
anisms of the neural network. For example, the ILSVRC revealed that 
animals with distinctive furs (e.g., foxes, porcupines, and tigers) are particu-
larly easy to classify. On the other hand, long, slender objects (e.g., letter 
openers, flagpoles, and water bottles) are typically the hardest to detect. 
Abstract concepts such as “restaurant” and “grocery store” are also among 
the most difficult categories for algorithms to distinguish.

Taken together, this evidence shows that neural networks are best at 
understanding localized features and struggle the most on categories that 
require putting together contextual knowledge across the entire image. 
Looking at specific objects that are misclassified by a model, the negative 
examples, is another method of understanding the behavior of neural net-
works. For example, an investigation of the negative examples from the 
GoogLeNet model— the 2014 winner of ILSVRC— showed particular dif-
ficulty with “images that contain multiple objects, images of extreme close-
ups and uncharacteristic views, images with filters, images that significantly 
benefit from the ability to read text [a salt shaker], images that contain very 
small and thin objects [fishing reel], images with abstract representations.”29 
These highlight challenges in the existing model and suggest significant gaps 
between the way the model understands images and humanlike processing 
of visual data. Ongoing research in computer vision is often motivated by 
understanding where, and ideally why, current models fail on certain tasks.
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Alternatively, another approach to understanding neural networks is 
to focus on objects where the model performs well. The motivation be-
hind the use of neural networks is their incredible predictive power. It 
seems reasonable that if we want to understand how neural networks 
function, some attention should be paid to the many objects that are cor-
rectly tagged. A clever approach to studying these positive examples is 
to occlude part of the object and observe the extent to which these oc-
clusions affect the predicted categories. For an image, this involves re-
placing a region of the image with a monochromatic box, effectively 
hiding a region of the image from the neural network.30 In text analysis, 
a similar approach removes one or more words or phrases.31 Visualizing 
the regions that most directly impact the predicted values, and quantify-
ing how much of the text or image can be removed without significantly 
impacting the results, provides an additional understanding of how the 
neural network represents knowledge. Similarly, the embeddings of cor-
rectly classified categories can be investigated for each layer of a neural 
network. Identifying which layers separate specific categories provides a 
window into the specific role of each layer in the overall prediction task.

Despite the existence of techniques for understanding neural network 
architectures, there remains a fundamental inability to understand how 
the network performs the task of transforming inputs into reliable predic-
tions. Negative examples elucidate those abstract features that are gener-
ally missed by the network. Positive examples, along with occlusion, hint 
at those regions and features that are captured by the model. How these 
features are captured, however, remains a mystery. The fundamental trou-
ble is the depth of the model. Each layer is codependent on all of the oth-
ers, and understanding the network therefore requires understanding the 
entire network all at once, which is impossible given the size and depth of 
modern neural networks. And the problem is only getting worse.

Over time, neural networks have grown deeper and more complex. The 
winning ILSVRC model “ResNet” from 2015 had a total of 152 layers (for 
comparison, AlexNet has only 8 layers).32 By 2016, the ResNet model had 
expanded to a total of 1,000 layers.33 Popular models for text analysis now 
commonly employ recurrent neural networks, which contain complex ar-
chitectures for storing “memories” as the network cycles through charac-
ters and words within a document. As further evidence of our inability to 
understand neural network models, recent research has revealed strange 
and unintuitive results from seemingly powerful predictive models. Care-
fully constructed perturbations can be applied to an image that are imper-
ceptible to the human eye but that cause arbitrarily large changes in the 
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predicted tags associated with the image.34 Conversely, images can be 
found that appear to be pure noise but are confidently categorized with an 
extremely high probability on one particular tag. These examples point to 
a significant gap in the way that neural networks process data compared 
with the human processing of images and text.

As neural networks become integrated into systems that directly affect 
people, it becomes increasingly important to understand how deep learn-
ing models function. Most of the work on interpretability has so far 
focused on understanding neural networks in order to modify their archi-
tecture and improve the predictive power of future models. However, it 
is arguably even more important to understand the models from a social 
perspective. How can we be convinced that an algorithm for tracking 
passengers at airport security is not motivated by racial profiling? What 
checks exist to detect when models employed by the medical industry are 
being optimized for insurance money rather than patient health? Or, 
what confidence do we have that autonomous vehicles trained in sunny 
California will accurately deal with snowy New England winters? All of 
these questions can be addressed on a macroscopic scale through exter-
nal validation and regulatory transparency, but it becomes difficult for an 
individual to trust or challenge the results of a specific model that eludes 
any direct ability to understand its internal mechanisms.

While many machine learning algorithms have been characterized as 
being uninterpretable black boxes, our characterization of neural net-
works as impenetrably difficult to understand draws on features unique 
to deep learning methods. Figure 15.4 displays a schematic representation 
of a “shallow”— a model that is not deep— predictive model. A collection 

Input

Transformation Transformation Transformation Transformation

Output

Figure 15.4. Schematic visualization of a “shallow learning” predictive model.
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of transformations is applied to the raw input data and then combined 
again to produce the output classifications. For comparison, Figure 15.5 
provides a diagram of a deep learning model in which transformations are 
sequentially applied to the input data in order to yield the output catego-
ries. Shallow models may become quite complex if there are a large num-
ber of transformations. For example, models such as boosted trees also 
often involve millions of parameters, and it can be difficult to understand 
how these parameters come together to produce a final set of predicted 
tags.35 However, shallow models can be decomposed into individual ele-
ments that each act independently on the input variables and produce 
distinct contributions to the output classification values. On a local level, 
at least, there is a possibility for understanding how regression and tree- 
based models construct predictions from their inputs. In contrast, the 
layered structure of deep learning models makes even this level of under-
standing impossible. The lack of a local understanding makes it difficult 
to assess the structure of a neural network and determine whether a spe-
cific application is (algorithmically) reasonable or advisable. The layered 
structure, then, is a fundamental cause of the impenetrable nature of deep 
learning models.

Input

Transformation

Transformation

Output Figure 15.5. Schematic visualization of a 
“deep learning” predictive model.
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Unavoidable Trichotomy

We have shown that deep learning models exhibit their depth along three 
alternative meanings of the term “deep.” They exhibit a deep knowledge 
in understanding image and textual data by producing accurate labels 
for a range of predictive modeling tasks. This predictive power is achieved 
through structures that consist of a deep succession of transformations 
that gradually push the input objects toward the predicted output tags. 
Finally, these chains of interrelated transformations hide the parameters 
of the model with an impenetrable depth that obscures exactly how they 
arrive at their results. Crucially, we have seen that these three elements 
are related by far more than the polysemous nature of the English word 
“deep.” The layered nature of deep learning models is a necessary feature 
for their ability to make predictions for hard tasks such as text and image 
processing, and these layers in turn are fundamentally difficult to inter-
pret. From the unavoidable interdependence between these elements of 
deep learning, we conclude here with implications for continued study 
of deep learning as an object of humanistic inquiry.

First, it is important to start describing the concept of a deep problem 
in addition to deep learning. The way in which text and image data are 
stored, as streams of characters and pixel intensities, necessitates the use 
of layered models that modify the original data and represent objects 
within a new space. In other words, the nature of working with text and 
image data requires deep learning models in order to achieve high levels 
of accuracy. Analysis of these objects is an intrinsically deep problem, 
irrespective of the specific models used to study them.

The classification of tasks, rather than the algorithms for performing 
them, as “deep” is important. It signals that many of the challenges 
underlying modern machine learning are actually problems of how knowl-
edge is transmitted and represented. In turn, this directly draws connec-
tions from machine learning into well- trodden areas of humanistic inquiry 
such as epistemology, semiotics, and communication theory. A word- 
embedding model maps directly onto Ferdinand de Saussure’s assertion 
that words draw meaning through their “simultaneous coexistence” with 
all other words.36 Autoencoders, a particular class of neural networks, pro-
vide a mathematical formulation directly related to Stuart Hall’s encoding/
decoding model of social communication.37 Erwin Panofsky’s tripartite se-
ries of levels to understanding works of art, which starts with the literal 
subject matter and proceeds up through iconography and iconology, 
mirrors the layered hierarchy of levels in modern convolutional neural 
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networks and hints at the application of transfer learning.38 The first level 
of interpretation is, in theory, universal; cultural considerations become 
more explicit higher up the chain of understanding. In short, by focusing 
on the tasks and not their explicit solutions, we find numerous points of 
contact between predictive modeling tasks and ongoing questions in a wide 
range of other fields. Providing points of connection across fields allows 
for more productive critiques and fruitful interdisciplinary interactions.

As a second implication, embeddings— the output of a particular se-
quence of transformations within a deep learning model— should be con-
sidered as an object of study in its own right. We have argued that the 
 intermediate representations offered by the internal layers of a neural net-
work do encode generalizable semantic information that can be utilized in 
new tasks through transfer learning. The internal representations, unlike 
the raw inputs, more directly encode useful semantic information. They 
have the potential to allow for the utilization of shallow models, even for 
many complex tasks.39 If we are able to find good general- purpose embed-
dings that work with shallow models, this would help alleviate some con-
cerns about the lack of interpretability in deep learning models. While the 
process of converting raw inputs into the embedding space may remain 
opaque, with time and analysis, a direct characterization of the embedding 
space could be achieved. Several results suggest that a general- purpose em-
bedding that can be used across all tasks, or a close approximation to one, 
can be attainable. In image processing, it has been shown that significant 
sequences of layers in neural networks can be inverted to re- create “pho-
tographically accurate information” about the image, establishing that 
relatively little information is being lost in (at least the lower- level) trans-
formations.40 For text analysis, where transferable embeddings initially 
proved more difficult to detect, recent work has produced several candi-
dates that appear to have generalized very well to a variety of tasks.41 The 
culture in deep learning research of making research, code, and datasets 
openly available is a great start for making it possible to offer meaningful 
studies of embedding spaces. We now need more scholars actively engaged 
in treating these embeddings as an important object of study.

Finally, it is also important to train scholars from a wide range of 
fields in the technology of deep learning, specifically neural networks. 
Layered models that successively reparametrize raw inputs are, as we 
have seen, necessary for sufficiently predictive models. Deep learning 
techniques will likely remain popular for a considerable amount of time 
and are poised to become even more integrated into important real- 
world systems. We need domain experts from fields such as medicine, 
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biology, public policy, law, economics, and across the humanities to un-
derstand this technology. To do so opens up avenues for both important 
innovations and meaningful critiques of current practices. As we have 
shown, deep learning models are difficult enough to comprehend even 
for those in the field of machine learning who have been working with 
them for decades. Due to this complexity, meaningful collaborations 
between domain experts and researchers in deep learning require a 
working understanding of the power and challenges of neural networks 
across disciplinary boundaries.

Deep learning approaches are here to stay. They offer amazing pre-
dictive accuracy and a plethora of exciting technological advances, but 
they also make way for a wide range of troubling applications. As deep 
learning becomes increasingly ubiquitous in real- world systems, the un-
avoidable trichotomy between knowledge, layers, and a lack of interpret-
ability has important implications for anyone concerned with the use 
and proliferation of algorithmic logic in society.42 Direct humanistic in-
quiry into the algorithms behind deep learning is needed as we grapple 
with their cultural and social implications.
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